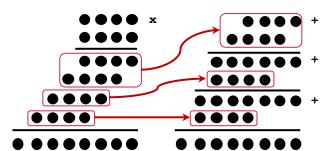
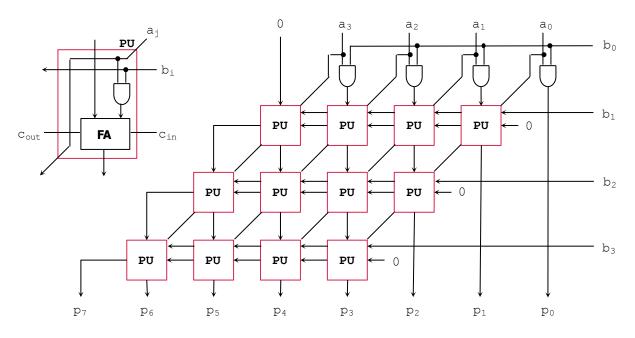
Laboratory 3

(Due date: **011**: October 11th, **005**: October 12th, **007**: October 13th)

OBJECTIVES

- ✓ Use the Structural Description on VHDL.
- ✓ Test arithmetic circuits on an FPGA.


VHDL CODING


✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

FIRST ACTIVITY (100/100)

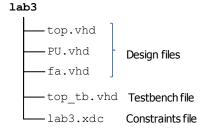
DESIGN PROBLEM

 The figure depicts an array multiplier for two 4-bit unsigned numbers. It is a straightforward implementation based on adding two partial products (rows) at each stage.

PROCEDURE

- Vivado: Complete the following steps:
 - ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device for the Nexys A7-50T).
 - ✓ Write the VHDL code for this unsigned array multiplier. <u>Synthesize</u> your code.
 - Use the <u>Structural Description</u>: Create a separate . vhd file for the Full Adder, the Processing Unit (PU), and the top file (Array Multiplier).
 - ✓ Write the VHDL testbench to test the circuit for all possible cases (256 cases). Use 'for loop'.
 - ✓ Perform Functional Simulation and Timing Simulation of your design. **Demonstrate this to your TA**.
 - □ Your simulation might need more time than Vivado Simulator's default (1 us). For example, to add 5 us, you can go to the TCL console and type: run 5 us →
 - Note that you can represent your data as unsigned integers (use Radix \rightarrow Unsigned Decimal).

✓ I/O Assignment: Generate the XDC file associated with your board.


Suggestion:

Board pin names	SW7	SW6	SW5	SW4	SW3	SW2	SW1	SW0	LED7	LED6	LED5	LED4	LED3	LED2	LED1	LED0
Signal names in code	A_3	A_2	A_1	A_0	Вз	B_2	B_1	B ₀	P ₇	P ₆	P ₅	P_4	P ₃	P_2	P ₁	P ₀

- The board pin names are used by all the listed boards (Nexys A7-50T/A7-100T, Basys 3, Nexys 4/DDR). The I/Os listed here are all active high.
- ✓ Generate and download the bitstream on the FPGA and perform testing (use a sample of representative cases from your testbench). **Demonstrate this to your TA**.

SUBMISSION

- Submit to Moodle (an assignment will be created):
 - ✓ This lab sheet (as a .pdf) signed off by the TA (or instructor)
 - ✓ (As a .zip file) The five generated files: VHDL code (3 files), VHDL testbench, and XDC file. DO NOT submit the whole Vivado Project.
 - Your .zip file should only include one folder. Do not include subdirectories.
 - It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory. This will allow for a smooth experience with Vivado.
 - You should only submit your source files AFTER you have demoed your work.
 Submission of work files without demoing will be assigned NO CREDIT.

TA signature:	Date:	